## edexcel "

## Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Biology (6BI05) Paper 01<br>Energy, Exercise and Coordination

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2016
Publications Code 46621_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the e boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 ( a )}$ | D - stays the same; | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 ( b ) ( i )}$ | D; | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 ( b ) ( i i )}$ | A-1; | (1) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{1 ( b ) ( i i i )}$ | B - myosin binding sites to be exposed; | (1) |


| Question <br> Number | Answer | Mark |
| :---: | :--- | :---: |
| $\mathbf{1 ( b ) ( i v ) ~}$ | B - myosin; | (1) |


| Question <br> Number | Answer | Mark |
| :--- | :---: | :---: |
| $\mathbf{1 ( b ) ( v )}$ | A - more mitochondria than fast twitch fibres; | (1) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 1(c) | 1. $\{$ extensor muscles / eq\} \{contract / shorten / eq\} ; <br> 2. leg is straightened / eq ; <br> 3. flexor muscle relaxes / eq ; <br> 4. description of antagonistic action e.g. these muscles working in opposition, when one contracts the other relaxes ; <br> 5. flexor is stretched / eq ; <br> 6. tendons attach muscles to bones / eq ; | 1 ACCEPT correctly named muscle e.g. quads/quadriceps <br> 3 ACCEPT correctly named muscle e.g. hamstrings <br> 4 I GNORE work together, in pairs | (4) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 2(a)(i) | Two from: | 1 ACCEPT surface area / volume <br> IGNORE mass |  |
|  | 1. idea of size of cube ;  |  |  |
|  | 2. same \{species / eq\} of carrot ; |  |  |
| 3. same \{age / source / eq\} of carrot ; |  | (2) |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 2(a)(ii) | 1. (oxygen is) electron acceptor / eq ; <br> 2. (also oxygen) binds with protons / $\mathrm{H}^{+} /$hydrogens ; <br> 3. Idea of electrons from \{electron transport chain / ETC\} ; <br> 4. to form (metabolic) water ; | 3 ACCEPT from cytochromes |  |


| Number |  |  |  |
| :--- | :--- | :--- | :--- |
| 2(b) | 1. aerobic respiration ; <br> 2. ref. to decarboxylation ; <br> 3. (when) pyruvate broken down / eq ; <br> 4. (decarboxylation occurs) in Krebs cycle ; <br> 5. details of where in Krebs cycle e.g. removed from \{ C6 / C5 / <br> eq\} compound ; | 5 ACCEPT C3 to C2 if refer to <br> link reaction |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 2(c) | 1. as temperature increases, percentage of $\mathrm{CO}_{2}$ in bag \{increases / eq\} ; <br> 2. (as temperature increase) \{reactants /named / eq\} \{gain more kinetic energy / collide more often \} ; <br> 3. increased enzyme activity / more E-S complexes form / eq ; <br> 4. smaller increase between 5 and 10 because \{more active sites occupied / some other factor is limiting / eq\} ; | 1 ACCEPT rises I GNORE change unqualified <br> 4 ACCEPT e.g. $\mathrm{O}_{2}$ concentration could be limiting, high $\mathrm{CO}_{2}$ levels inhibit enzymes | (3) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 2(d) | anaerobic respiration; | ACCEPT fermentation but not <br> lactic acid fermentation <br> IGNORE: respiration <br> unqualified | (1) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 3(a) | 1. idea that stimulation generated from within (muscle); |  |  |
|  | 2. idea that this results in depolarisation; |  | (2) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 3(b) | 1. idea that it shows electrical activity of the heart ; <br> 2. idea of how to identify \{one heart beat / time for one heart <br> beat\}; | ACCEPT for 2: from one \{P <br> wave / QRS complex / T wave \} <br> to the next |  |
| 3. count the number of \{ these / peaks / eq \} in a \{set time / <br> stated time\} or how long from one set of electrical activity to <br> the next ; <br> 4. description of how to obtain heart rate e.g. beats divided by <br> time ; | (3) |  |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 3(c) | QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence <br> 1. the concentration of carbon dioxide in the alveoli is higher / eq ; <br> 2. the concentration of carbon dioxide in the blood is higher / pH of blood is lower / eq ; <br> 3. detected by chemoreceptors in \{medulla /carotid artery / aorta \}; <br> 4. reference to \{cardiovascular / cardiac\} control centre in medulla ; <br> 5. reference to autonomic nervous system / sympathetic nerve ; <br> 6. more impulses to SAN / eq ; <br> 7. \{ noradrenalin(e) / norepinephrine \} released onto SAN ; <br> 8. SAN (excitation) rate increased / eq ; <br> 9. heart rate will increase / eq ; | QWC Emphasis is on spelling of technical terms <br> 1 ACCEPT \{diffusion / concentration\} gradient increased | (5) |


| Number |  | ACCEPT comments on <br> monozygotic twins (MZ) raised <br> apart as a context |  |
| :--- | :--- | :--- | :--- |
| 4(a) | 1. \{ identical / monozygotic twins \} are genetically identical / <br> eq ; <br> 2. derived from one egg and one sperm /one \{ zygote / <br> embryo / eq \} / eq ; <br> 3. (so any phenotypic ) difference is due to \{ nurture / <br> environmental \} / eq ; <br> 4. \{non-identical twins / dizygotic twins\} are genetically <br> different ; <br> IGNORE: same DNA / genes | 2 ACCEPT one fertilised egg, ball <br> of cells, blastula <br> the same is likely to be \{ nature / genetic / eq \} / eq ; is |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(i) | 1. study groups from different cultures / eq ; <br> 2. (if) outcome is the same then (likely to be) nature ; <br> 3. (if) outcome is different in the groups then (likely to be) <br> nurture ; | 1 I GNORE different <br> countries / environments |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(ii) | 1. idea of large sample size ;  <br>  2. idea of standardised sampling technique e.g. age, gender ; <br> 3. same (range of) emotions used / eq  |  |  |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 5(a)(i) | 1. idea that potassium (ion) gradient is greater than sodium (ion) gradient ; <br> 2. Credit correct comparative manipulation of the data ; <br> 3. idea of concentration gradients act in different directions / eq ; | 1 ACCEPT steeper, higher for greater <br> 2 ACCEPT e.g ( $\mathrm{K}^{+}$gradient is greater than gradient for $\mathrm{Na}^{+}$) by $10 \mathrm{mmol} \mathrm{dm}^{-3}$, ratio e.g. 1:10 and 30:1 | (2) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 5(a)(ii) | 1. idea that proteins act as channels ; <br> Repolarising: <br> 2. (most voltage-dependent) \{ sodium / Na+ \} \{ channels / eq \} closed ; <br> 3. sodium ions cannot (continue to) enter \{ neurone / cytoplasm / eq \} ; <br> Resetting after hyperpolarisation: <br> 4. (voltage-dependent) \{ potassium / K+ \} \{ channels / eq \} close ; <br> 5. sodium-potassium pump imports (two) potassium ions and exports (three) sodium ions / eq ; | I GNORE: descriptions of depolarisation/action potentials <br> 1 ACCEPT gates for channels |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| 5(b) | 1. idea that Ca²+ enters synaptic bouton ; | 1 ACCEPT for 1: knob, button, <br> presynaptic neurone for bouton, <br> through presynaptic membrane |  |
|  | 2. vesicles containing neurotransmitter / eq ; <br> 3. \{ move towards / fuse with presynaptic membrane / eq \} / <br> reference to exocytosis (of neurotransmitter) ; | 3 ACCEPT neurotransmitter <br> released into synaptic \{gap / <br> cleft $\}$ <br> IGNORE: vesicles being <br> released | (3) |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 6(a)(i) | correct answer with units gains full marks <br> 1. $5 \div 90$; <br> 2. $=\{0.056 / 0.06\}$ au $\mathrm{min}^{-1}$; <br> OR $\begin{aligned} & 3[(0.3 \div 30)+(3.7 \div 30)+(1 \div 30) \div 3] ; \\ & 4=\{0.054 / 0.05\} \text { au } \mathrm{min}^{-1} ; \end{aligned}$ | ACCEPT answer expressed as e.g. 3.6 au per hour <br> 2 ACCEPT au/min, au per min | (2) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{6 ( a ) ( \text { ii) }}$ | 1. idea that rate of use is greater than uptake from gut ; <br> 2. idea that L-Dopa leaves the blood into tissues ; <br> 3. L-Dopa crosses the blood-brain barrier / eq ; <br> running low in gut unqualified |  |  |
|  | 4. converted to dopamine / eq ; | 4 ACCEPT L-Dopa is a precursor <br> to dopamine <br> 5 ACCEPT metabolised for <br> broken down |  |


| Number |  |  |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i )}$ | when touched / eq \} the tentacles \{ not pulled into body / <br> remain outside body / eq \}; | ACCEPT: no response when <br> touched / no reaction to stimulus | (1) |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i i )}$ | 1. use habituated sea anemone / eq ; |  |  |
|  | 2. idea of stimulate after leaving for different lengths of time ; | 2 ACCEPT examples given |  |
|  | 3. idea of repetition at each different time ; | 4. note time when anemone responds to being touched / eq ; | 4 ACCEPT note time when <br> withdraws tentacles into body |


| $\mathbf{7 ( a ) ( i )}$ | 1. as it is a greenhouse gas / eq ; <br> 2. idea of $\mathrm{CO}_{2}$ leading to global warming; | 2 ACCEPT description of <br> effect of global warming |  |
| :--- | :--- | :--- | :--- |


| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| * 7(a) (ii) | * QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence <br> 1. idea of using gene involved / eq ; <br> 2. reference to \{restriction enzyme / endonuclease\} / eq ; <br> 3. idea of same (restriction) enzyme used to cut open plasmid / eq ; <br> 4. reference to sticky ends ; <br> 5. detail of sticky ends e.g. complementary bases exposed ; <br> 6. (DNA) ligase used to bind useful gene to plasmid / eq ; <br> 7. by forming phosphodiester bonds / eq ; <br> 8. idea of uptake of plasmid by bacterium ; | QWC Emphasis is on logical sequence <br> 1 ACCEPT allele <br> 6 ACCEPT join for bind <br> 7 ACCEPT description of a phosphodiester bond | (6) |
| Question Number | Answer | Additional Guidance | Mark |

$\left.\begin{array}{|l|l|l|l|}\hline \text { 7(b) } & \begin{array}{l}\text { Correct answer gains both marks } \\ \text { 1. (one gene contains) } 580000 \div 525 \\ / 1104.76 \text { base pairs ; } \\ \text { 2. this is }\{2210 / 2209.5\} \text { bases ; } \\ \text { OR } \\ \text { 3. (genome is } 580000 \times 2)=1160000 \text { bases ; } \\ \text { 4. (one gene is } 1160000 \div 525)=\{2210 / 2209.5\} \\ \text { bases ; }\end{array} & \text { Allow 1 mark: } 1105 \text { bases }\end{array}\right]$

| Question Number | Answer | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: |
| 7(c)(i) | 1. deoxyribose in DNA AND ribose in RNA ; <br> 2. thymine in DNA AND uracil in RNA ; <br> 3. idea of enzymes being used are different e.g. DNA polymerase v. RNA polymerase ; <br> 4. 2 strands in DNA and 1 strand for RNA ; | 2 ACCEPT T and U <br> 3 ACCEPT DNA formed by DNA replication and RNA by transcription <br> 4 ACCEPT double helix for 2 strands in DNA | (3) |
| Question Number | Answer | Additional Guidance | Mark |
| 7(c)(ii) | so it can be inserted into a bacterium / idea of less likely to degrade ; | ACCEPT: less likely to \{mutate / break down \} | (1) |


|  |  | IGNORE: for storage <br> unqualified |  |
| :--- | :--- | :--- | :--- |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{7 ( d )}$ | 1. idea that product of a gene acts as an inhibitor ; | $\mathbf{1}$ ACCEPT protein/polypeptide <br> for product, and repressor for <br> inhibitor |  |
|  | 2. idea of inhibits next gene ; <br> 3. (if) 1 st gene active, it inhibits $2^{\text {nd }}$ gene so $3^{\text {rd }}$ gene is active <br> 4. Idea of gene is transcribed for a limited time ; | 3 ACCEPT other logical sequence <br> e.g. 2,3 and then 1 |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| 7(e) | 1. each step requires its own enzyme / eq ; |  |  |



| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{7 ( f )}$ | 1. idea of being non-pathogenic ; <br> 2. virus will \{identify / bind to / eq\} cancer cells / eq ; <br> 3. virus destroys cancer cells / eq ; | 1 ACCEPT attenuated, harmless |  |


| Question <br> Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 ( g )}$ | 1. (small number of) healthy people / eq ; |  |  |


|  | 2. in case the treatment is dangerous / eq ; <br> 3. idea of establishing dosage ; | 2 ACCEPT ref to side effects, to <br> make sure it is safe | (3) |
| :--- | :--- | :--- | :--- |


| Question Number | Answer |  |  |  | Additional Guidance | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7(h) | 1. <br> 2. | Stem | I nsulin |  | 1 ACCEPT switched off <br> 2 ACCEPT specialised for differentiated |  |
|  |  | \{ any / eq \} genes can be activated | most genes deactivated / eq |  |  |  |
|  |  | \{ un / less \} differentiated | Differentiated |  |  |  |
|  | 3. | cell can continue to divide / no Hayflick limit | \{ limited / no \} cell division / Hayflick limited |  |  |  |
|  | 4. | can give rise to various different cell types | cannot give rise to other types of cell |  |  |  |
|  | $5 .$ | No insulin made / insulin gene not active | Insulin made / insulin gene active |  |  |  |
|  | 6. | Found in various locations / named location (other than pancreas) | Found in pancreas |  |  |  |
|  |  |  |  |  |  | (3) |


| $\mathbf{7 ( i )}$ | radiation could lead to \{ cancer / mutation / eq \} ; | ACCEPT: named example e.g. <br> deletion |  |
| :--- | :--- | :--- | :--- |

